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Abstract

The epigenetic modification of chromatin structure and its effect on complex neuronal processes like learning and memory
is an emerging field in neuroscience. However, little is known about the ‘‘writers’’ of the neuronal epigenome and how they
lay down the basis for proper cognition. Here, we have dissected the neuronal function of the Drosophila euchromatin
histone methyltransferase (EHMT), a member of a conserved protein family that methylates histone 3 at lysine 9 (H3K9).
EHMT is widely expressed in the nervous system and other tissues, yet EHMT mutant flies are viable. Neurodevelopmental
and behavioral analyses identified EHMT as a regulator of peripheral dendrite development, larval locomotor behavior, non-
associative learning, and courtship memory. The requirement for EHMT in memory was mapped to 7B-Gal4 positive cells,
which are, in adult brains, predominantly mushroom body neurons. Moreover, memory was restored by EHMT re-expression
during adulthood, indicating that cognitive defects are reversible in EHMT mutants. To uncover the underlying molecular
mechanisms, we generated genome-wide H3K9 dimethylation profiles by ChIP-seq. Loss of H3K9 dimethylation in EHMT
mutants occurs at 5% of the euchromatic genome and is enriched at the 59 and 39 ends of distinct classes of genes that
control neuronal and behavioral processes that are corrupted in EHMT mutants. Our study identifies Drosophila EHMT as a
key regulator of cognition that orchestrates an epigenetic program featuring classic learning and memory genes. Our
findings are relevant to the pathophysiological mechanisms underlying Kleefstra Syndrome, a severe form of intellectual
disability caused by mutations in human EHMT1, and have potential therapeutic implications. Our work thus provides novel
insights into the epigenetic control of cognition in health and disease.

Citation: Kramer JM, Kochinke K, Oortveld MAW, Marks H, Kramer D, et al. (2011) Epigenetic Regulation of Learning and Memory by Drosophila EHMT/G9a. PLoS
Biol 9(1): e1000569. doi:10.1371/journal.pbio.1000569

Academic Editor: Robert R. H. Anholt, North Carolina State University, United States of America

Received July 27, 2010; Accepted November 10, 2010; Published January 4, 2011

Copyright: � 2011 Kramer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: ZA, HGS, KK, HvB, and AS are supported by GENCODYS, a large-scale integrating project funded by the European Union under the 7th Framework
Programme (241995). HM and HGS are supported by HEROIC, an integrating project funded by the European Union under the 6th Framework Programme (LSHG-
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Introduction

Modification of chromatin structure regulates many aspects of

cell and developmental biology. Epigenetic regulators are known

to affect complex neuronal processes such as learning and memory

[1–3] and contribute significantly to the occurrence of cognitive

disorders, such as schizophrenia and intellectual disability

(previously referred to as mental retardation) [4,5]. However,

little is known about the ‘‘writers’’ of the neuronal epigenome that

lay down the basis for proper cognition. Are these chromatin

writers required to safeguard neuronal homeostasis/fitness by

influencing the expression of a large and heterogeneous group of

genes, such as house-keeping and non-neuronal genes? Or do they

lay down specific epigenetic programs to regulate neuronal genes

that are directly involved in determination of connectivity,

plasticity, learning, and memory?

The euchromatin histone methyltransferases (EHMTs) are a

family of evolutionarily conserved proteins that write part of the

epigenetic code through methylation of histone 3 at lysine 9

(H3K9) [6–10]. In mammals, two EHMT paralogs exist,

EHMT1/GLP and EHMT2/G9a. Heterozygous mutations or

deletions of the human EHMT1 gene cause Kleefstra Syndrome

(OMIM #610253), a neurodevelopmental disorder that is

characterized by autistic-like features and severe intellectual

disability [11–14]. Studies in mice have shown that Ehmt1/GLP

and Ehmt2/G9a form a heterodimeric complex [8], and that loss
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of either protein resulted in nearly identical phenotypes, such as

early embryonic lethality, reduced H3K9 dimethylation

(H3K9me2), and inappropriate gene transcription [7,8]. Further-

more, mice with neuronal ablation of Ehmt1/GLP and Ehmt2/

G9a in adulthood show defects in fear conditioned learning. A

gene expression study in different brain areas of these mice has led

to the suggestion that EHMT proteins act as repressors of non-

neuronal genes in neuronal tissues [15]. Here, by using classic

Drosophila genetics, extensive neurodevelopmental and behavioral

phenotyping, expression profiling, and genome-wide mapping of

EHMT target loci by H3K9me2 profiling, we uncover EHMT as

a key epigenetic regulator of neuronal genes and processes.

Results

EHMT/G9a Is the Solitary Drosophila Ortholog of EHMT1
and EHMT2/G9a

We set out to study EHMT/G9a in Drosophila. In contrast to

mammals, which have two EHMT genes, flies possess a single

ortholog [6,10] that we will subsequently refer to as EHMT

throughout our manuscript. Phylogenetic analysis of the EHMT

protein family in Drosophila, human, and mouse shows that

Drosophila EHMT is equally similar to both EHMT1 and

EHMT2/G9a (Figure 1a).

EHMT Is Expressed in the Fly Nervous System
We first examined expression and subcellular localization of the

EHMT protein in the fly nervous system using an anti-EHMT

antibody [10]. In the adult brain EHMT staining is widely

abundant, in a pattern resembling nuclear DAPI staining

(Figure 1b). Analysis at single cell resolution in the ventral nerve

cord of third instar larvae demonstrates that EHMT is localized in

the nuclei of neurons as revealed by colocalization with the

neuronal nuclear marker elav (Figure 1c) [16]. Weaker EHMT

staining colocalized with repo (Figure 1d), a nuclear glial marker

[17]. EHMT staining was also observed in the nuclei of the larval

multiple dendrite (md) sensory neurons of the peripheral nervous

system labeled using the 109(2)80-Gal4 driver [18] to express

memGFP (Figure 1e). In addition, EHMT staining was observed

at low levels in non-neuronal tissues such as the muscle and

epidermis (Figure S1c). The anti-EHMT immunolabeling is

specific, as it is absent in EHMT mutant embryos, md neurons,

adult brains, and larval body-walls (Figures 2c and S1). These data

reveal that EHMT is widely expressed in the Drosophila nervous

system.

Generation of EHMT Mutant Flies
In order to uncover the functions of EHMT we generated

deletions in the EHMT gene by excision of a P-element, KG01242,

located in the 59 UTR. We screened 80 independent excision lines

and identified two downstream deletions (DD) resulting from

imperfect excisions of KG01242. Both deletion strains are viable to

adulthood, which is consistent with a viable EHMT knock-out

allele generated by homologous recombination in Drosophila [19].

EHMTDD1 and EHMTDD2 lack 870 and 1473 base pairs of DNA

downstream of the original P-element insertion site, respectively,

including the EHMT translational start site (Figure 2a). We also

isolated a precise transposon excision line that represents the same

genetic background as our deletion lines and served as a control in

all subsequent experiments (referred to as EHMT+). Western blot

analysis revealed a band of the expected size (180 kDa) in EHMT+

embryonic protein extracts, which was absent in extracts from

both deletion lines (Figure 2b). No extra bands were detected by

the C-terminally directed EHMT antibody [10] that would point

to expression of an N-terminally truncated protein. EHMT

protein was also undetectable by immunohistochemistry in EHMT

mutant embryos, md neurons, and adult brains, while showing a

nuclear staining pattern in EHMT+ animals (Figures 1, 2c, and

S1). Expression of the neighbor gene, CG3038, was not affected by

the deletions (Figure S2). These data show that EHMTDD1 and

EHMTDD2 are strong and specific loss of function mutants, most

likely complete null alleles.

EHMT Regulates Dendrite Branching in Type 4 Multiple
Dendrite Neurons

Next, we examined several aspects of neuronal development in

EHMT mutant flies. Analysis of adult mushroom body architec-

ture, synaptic morphology of the larval neuromuscular junction,

and adult photoreceptor function (assessed by electroretinography)

(Figure S3) as well as analysis of embryonic nervous system

integrity (unpublished data) did not reveal significant differences in

mutant versus control conditions, indicating that general nervous

system development and neuronal function is not affected.

Loss of EHMT did however result in altered dendrite development

in multidendrite (md) neurons, which are sensory neurons that tile the

larval body wall. We specifically examined dendritic arbors of type 4

md neurons, which were highlighted using the 477-Gal4 driver [20]

and the UAS-Gal4 system [21] (Figure 3a and 3b). These neurons are

highly stereotyped in their number, position, and morphology, thus

allowing for quantitative analysis of dendritic arbors of identical

neurons in different animals and genotypes. While the basic

organization of these arbors is maintained in EHMT mutants

(primary branches labeled I, II, III, and IV in Figure 3a and 3b),

reduction of higher order branching resulted in dendritic fields of

appreciably reduced complexity (Figure 3a, 3a’ versus 3b, 3b’). We

quantitatively assessed this defect by counting the number of dendrite

ends per standardized field of view in stacked confocal images. This

analysis confirmed that EHMTDD1 and EHMTDD2 had a consistent

and statistically significant decrease in the total number of dendrite

ends, showing 16 and 17.5 percent reduction, respectively, when

compared to EHMT+ (Figure 3c).

To address whether this phenotype results cell-autonomously

from EHMT deficiency in neurons, we generated UAS-EHMT

transgenic flies and performed cell-specific rescue experiments

Author Summary

Epigenetic regulators can affect gene transcription
through modification of DNA and histones, which together
form chromatin. The importance of such regulators for
cognition is increasingly appreciated, but only few key
factors have been identified so far. Excellent candidates are
histone modifiers that are involved in intellectual disability,
such as EHMT1, implicated in Kleefstra Syndrome. Here, we
characterized the neuronal function of EHMT in Drosophila.
Flies that lack EHMT are viable but show highly selective
defects in specific aspects of neuronal development and
function, including learning and memory. Genome-wide
analysis of EHMT-mediated histone methylation revealed
that EHMT targets the majority of all currently known
Drosophila learning and memory genes. It also targets
genes known to be involved in the other aspects of
behavior and neuronal development that are compro-
mised in EHMT mutants. Remarkably, EHMT mutant
memory deficits can be reversed in adulthood, suggesting
that epigenetic influences on cognition are not always
permanent. Our results provide novel insights into the
epigenetic control of cognition in health and disease.

EHMT Regulates Learning and Memory in Flies
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(Figure 3c). Re-expression of EHMT in mutant type 4 md neurons

(using 477-Gal4) did indeed rescue dendrite branching towards

wild-type levels (Figure 3c, red and orange bars). This reversal is

specific, since expression of EHMT in the EHMT+ genetic

background did not increase branching (Figure 3c, black bars).

Rather, EHMT overexpression appeared to reduce dendrite

branching as compared to controls expressing Gal4 and GFP in

the absence of UAS-EHMT, although this reduction was not

statistically significant (Figure 3c, black bars). These data show that

EHMT is cell-autonomously required in type 4 md neurons to

establish normal dendrite complexity.

EHMT Affects Larval Locomotory Behavior
Drosophila md neurons are important in the regulation of larval

locomotion behavior [22–24]. We therefore examined larval

locomotory patterns during the early third instar using an

established larval foraging assay (Figure 4) [25]. Larval crawling

paths were analyzed for total path length over a 5 min period and

for specific crawling patterns, such as branched versus straight

paths. The total path length covered by foraging larvae was not

different between mutants and EHMT+ controls (Figure 4b),

indicating that crawling ability is not hindered in these larvae.

However, striking differences in larval locomotory patterns were

Figure 1. EHMT phylogeny and expression in the nervous system. (a) A phylogenetic tree generated using the neighbor joining method
showing the evolutionary relationship between Drosophila EHMT and the mouse and human orthologs of EHMT1 and EHMT2/G9a. Analysis was
performed with the Vector NTI software (Invitrogen). The scale bar indicates phylogenetic distance. (b) Frontal view of an adult Drosophila brain
stained with an antibody to EHMT (green) and counterstained with DAPI (magenta). EHMT is widely expressed but excluded from neuropilar regions
such as the mushroom body calyx (asterisk in merge panel). (c–d) Horizontal view of a third instar larval ventral nerve cord (vnc) stained with an anti-
EHMT antibody (green) and counterstained with (c) anti-elav (magenta) to highlight neuronal nuclei or with (d) anti-repo (magenta) labeling glial
nuclei. EHMT colocalizes with elav and repo but appears to be expressed at a lower level in glia. (e) The ventral cluster of multiple dendrite neurons of
the larval body wall labeled with memGFP (green) using the 109(2)80-Gal4 driver and stained with anti-EHMT (red) and DAPI (blue). Arrowheads point
to the midline of the brain (in b) and vnc (in c, d). Scale bars represent 100 mm in (b), 50 mm in (c–d), and 10 mm in (e). Anterior is to the left (c–e).
doi:10.1371/journal.pbio.1000569.g001
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observed between mutant and wild-type. Foraging EHMT mutant

larvae often stop, retract, and turn, causing increased branching in

their crawling paths (Figure 4a). Quantitative analysis of the length

of the resulting side branches revealed an increase of approx-

imately 4-fold and 2-fold, respectively, in EHMTDD1 and

EHMTDD2 (Figure 4c). Thus, the dendrite phenotype of EHMT

mutant larvae is associated with an altered crawling behavior. In

contrast, other innate behaviors, such as adult phototaxis and

negative geotaxis, were normal in EHMT mutants (Figure S4). To

address whether the dendrite phenotype of type 4 md neurons

alone is sufficient to cause the abnormal crawling pattern, we

attempted to rescue this phenotype by re-expression of UAS-

EHMT in type 4 md neurons using 477-Gal4. This was not

sufficient to restore normal larval locomotor behavior, indicating

that dendritic defects in type 4 md neurons and abnormal

locomotory behavior might arise independently.

EHMT Regulates Habituation, a Form of Non-Associative
Learning

Next, we analyzed the role of Drosophila EHMT in learning.

Habituation is a form of non-associative learning where an initial

response to a repeated stimulus gradually wanes [26]. In the light-

off jump reflex habituation assay [27] flies were exposed to a

sudden light-off pulse and measured for a jump response over the

course of 100 trials with a 1 s inter-trial interval. Figure 5a and 5b

show the proportion of flies that do show a jump response over the

course of 100 trials. Hemizygous EHMT mutant males (genotypes:

EHMTDD1/Y and EHMTDD2/Y) and transheterozygous EHMT

mutant females (genotype: EHMTDD1/EHMTDD2) both displayed

a drastically slower response decrement during the habituation

procedure as compared to wild-type EHMT+ flies (Figure 5a and

5b). Individual flies were deemed to have habituated when they

failed to jump in five consecutive trials (no-jump criterion).

Habituation was scored as the number of trials required to reach

the no-jump criterion (trials to criterion). The mean number of

trials to criterion for mutants, EHMTDD1/Y, EHMTDD2/Y, and

EHMTDD1/EHMTDD2, was significantly higher (12-, 8-, and 6-

fold, respectively) than for EHMT+ wild-type flies (p,0.001)

(Figure 5c). These experiments establish a role for EHMT in

regulating non-associative learning.

EHMT Is Required for Courtship Memory
Having established a role for EHMT in habituation, a simple

learning process, we asked whether EHMT is also involved in

Figure 2. Molecular characterization of EHMT alleles. (a) Schematic depiction of the genomic region containing EHMT and the location of the
EHMT deletions. Blue boxes indicate EHMT exons. The red bar shows the location of the predicted translational start site. The black bar and triangle
indicate the location of the P-element insertion KG01242. The green bar marks the epitope of the EHMT antibody. The size and location of the EHMT
deletions DD1 and DD2 (downstream deletions 1 and 2) is indicated. (b) Western blot using anti-EHMT and embryonic protein extracts from EHMT+

(lane 1), EHMTDD1 (lane 2), and EHMTDD2 (lane 3).The EHMT band (arrowhead) is positioned in accordance with a predicted size of 180 kDa. This band
is absent in the deletion lines and no extra bands were observed. a-tubulin was used as loading control. (c) EHMT+, EHMTDD1, and EHMTDD2 embryos
at blastoderm stage, stained with anti-EHMT (green) and DAPI (magenta). EHMT staining is nuclear in wild-type and absent in mutant EHMT embryos.
Scale bar is 100 mm.
doi:10.1371/journal.pbio.1000569.g002
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more complex forms of learning and/or memory using the

courtship conditioning paradigm. This assay is based on the

conditioning of male courtship behavior by exposure to a non-

receptive female, which in presence of normal learning and

memory capacities results in suppression of courtship [28]. Male

flies were paired with a non-receptive pre-mated female for

appropriate time intervals (see Experimental Procedures) and

tested for courtship suppression immediately following the training

period, after 30 min or after 24 h, to assess learning, short-, and

long-term memory, respectively. The mean Courtship Index (CI,

the percentage of time spent on courtship during a 10 min

interval) of trained males and of socially naı̈ve males was assessed

to calculate a Learning Index (LI), which is defined as the percent

reduction in mean courtship activity in trained males compared to

naı̈ve males; LI = (CInaive 2 CItrained)/CInaive. We found that

EHMT mutant flies are perfectly capable of this form of learning,

as they efficiently suppressed courtship immediately following the

training period (Figure 5d). Strikingly, the Learning Index of

EHMTDD1 males was reduced by 50% at 30 min after training

(STM-short term memory), and even more dramatically, to 17%

of the wild-type value at 24 h after training (LTM-long term

memory) (Figure 5d). These results indicate that EHMT is

Figure 3. EHMT regulates dendrite branching. (a, b) Representative confocal images of ventral type 4 md neurons from (a) EHMT+ and (b)
EHMTDD2 third instar larvae labeled by expression of UAS-memGFP using the 477-Gal4 driver. I, II, III, and IV label the primary dendrite branches, which
are conserved in all neurons examined. Scale bars represent 50 mm. (a’, b’) High magnifications of neurons shown in (a) and (b), respectively. Scale
bars represent 10 mm. (c) Quantitative evaluation of dendrite ends per field of view, as shown in (a–b). Note that dendrite branching was significantly
reduced in EHMT mutants. 477-Gal4 driven expression of UAS-EHMT caused a non-significant reduction of dendrite branches in the EHMT+

background (black bars) and restored the number of dendrite ends in EHMTDD1 (red bars) and EHMTDD2 (orange bars). Error bars represent standard
error of the mean. Complete genotypes are indicated. Sample sizes were n = 19, 20, 18 for the mutant conditions and 9, 8, and 11 for the rescue
experiment, respectively, in EHMT+, EHMTDD1, and EHMTDD2. (*) represents a significant difference to EHMT+; 477-Gal4, UAS-memGFP/+ (p,0.05, one-
way ANOVA and Bonferroni tests).
doi:10.1371/journal.pbio.1000569.g003

EHMT Regulates Learning and Memory in Flies

PLoS Biology | www.plosbiology.org 5 January 2011 | Volume 9 | Issue 1 | e1000569



dispensable for courtship learning but necessary for both short-

and long-term courtship memory.

The Requirement for EHMT-Based Courtship Memory
Maps to 7B-Gal4 Positive Neurons

To provide evidence for the specificity of the courtship

conditioning phenotype and to roughly map where EHMT is

required to control learning and memory in this paradigm, we

performed rescue experiments in the EHMTDD2 background using

tissue specific expression of UAS-EHMT and short-term memory

(30 min after training) as a read-out. The elav-Gal4 driver was used

to express EHMT in all neurons, and the 7B-Gal4 promoter for

more selective expression. Indeed, pan-neuronal expression of

EHMT in the mutant background restored the Learning Index to

normal levels (Figure 5e, orange bars, pan neuronal versus EHMT

mutants), providing evidence that EHMT is required cell-

autonomously in neurons to achieve normal memory. Elav-driven

expression of EHMT in the EHMT+ genetic background had no

significant effect on Learning Index (Figure 5e, black bars, pan

neuronal versus EHMT mutant). 7B-Gal4 is predominantly

expressed in the mushroom bodies of adult brains but is also

expressed and at lower levels in some other brain regions,

including the antennal lobe (Figure S5) [29]. Expression of EHMT

with this driver in the EHMT mutant background was able to

rescue the Learning Index (Figure 5e, orange bars, 7B-Gal4 versus

EHMT mutant), revealing that EHMT function in 7B-Gal4

neurons is sufficient for normal memory. We also observed that

overexpression of EHMT using 7B-Gal4 in the EHMT+ back-

ground significantly reduced the Learning Index (Figure 5e, black

bars, 7B-Gal4 versus EHMT mutants). Since the Learning Index

was normal in EHMT mutants containing both 7B-Gal4 and UAS-

EHMT, we conclude that there is no deleterious effect due to the

expression of Gal4 or the 7B-Gal4 P-element insertion itself. We

therefore asked whether the presence of endogenous EHMT could

make a significant difference to the absolute protein levels in the

mushroom body upon 7B-Gal4-mediated overexpression. We

observe a very high and uniform EHMT staining in all mushroom

body Kenyon cells upon UAS-EHMT expression with 7B-Gal4 in

the EHMT+ background (Figure S6). A similar staining pattern

was observed using this driver in the EHMT mutant background,

although staining intensity was noticeably lower, likely due to the

absence of endogenous EHMT (Figure S6). In contrast, the elav-

Gal4 driver resulted in a non-uniform staining pattern, with high

EHMT levels in only a small proportion of Kenyon cells (Figure

S6). Thus, overexpression of EHMT in 7B-Gal4 neurons appears

to be deleterious when above a certain threshold. These results

suggest that appropriate levels of EHMT in the Drosophila nervous

system are critical for courtship memory and indicate that the

requirement for EHMT in this process is confined to 7B-Gal4

positive neurons.

Taken together with the defect in jump reflex habituation, these

data reveal an important role for EHMT not only in a simple form

of learning but also in a more complex cognitive process such as

courtship memory.

EHMT-Mediated Memory Can Be Rescued in Adulthood
Recently, it has been reported that postnatal loss of Ehmt1 and

G9a in mice causes cognitive defects in the absence of obvious

developmental abnormalities [15]. We therefore asked whether

the memory defects of EHMT mutants in the courtship

conditioning paradigm can be rescued by expression of EHMT

in adulthood. Indeed, induced expression of EHMT using hs-Gal4

after eclosion (see Experimental Procedures) completely restored

memory defects shown by siblings of the same genotype that had

not undergone the heat-shock procedure (Figure 5f). This

demonstrates that EHMT is required for memory in adult flies

and highlights that cognitive defects are reversible in EHMT

mutant flies.

Generation of Genome Wide H3K9me2 Methylation
Profiles

The reversible memory defects in EHMT mutant flies suggest a

critical role for EHMT in neuronal function in addition to its role

in dendrite development. We therefore wanted to determine the

molecular mechanisms through which EHMT regulates neuronal

processes. EHMT proteins mediate histone 3 lysine 9 dimethyla-

tion (H3K9me2) in euchromatic regions of the mammalian and fly

genomes [6,7,10]. Therefore, we investigated EHMT target sites

by generating genome-wide H3K9me2 profiles for EHMT mutant

and wild-type larvae using chromatin immunoprecipitation (ChIP)

Figure 4. EHMT mutants show altered larval locomotory
behavior. (a) Larval crawling paths from EHMT+, EHMTDD1, and
EHMTDD2. (b–c) Quantification of larval locomotory patterns revealed
no significant difference in the (b) total path length but showed a
significant increase in (c) side track length in both EHMTDD1 (red bars)
and EHMTDD2 (orange bars). Data are normalized to EHMT+ and error
bars represent the standard error of the mean. N = 149, 148, and 149 for
EHMT+, EHMTDD1, and EHMTDD2, respectively. (*) indicates a significant
difference to EHMT+ (p,0.05, Kruskal-Wallis and Mann-Whitney tests).
doi:10.1371/journal.pbio.1000569.g004

EHMT Regulates Learning and Memory in Flies
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with an H3K9me2 antibody followed by massive parallel

sequencing of the co-precipitated DNA (ChIP-seq technology).

Mapping of the sequenced tags to the Drosophila genome revealed a

genome-wide profile that is consistent with known H3K9me2

patterns [30,31]. High H3K9me2 is a known characteristic of

heterochromatin [31]. Accordingly, we find high H3K9me2 levels

in both wild-type and EHMT mutant strains in annotated

heterochromatic regions that are contiguous with the assembled

euchromatic chromosome arms (Chr2Lh, Chr2Rh, Chr3Lh,

Chr3Rh, and ChrXh) (Figure S7) [32]. This was expected, since

EHMT is known to have no effect on heterochromatin formation

and heterochromatic H3K9me2 levels are known to be unaffected

by loss of EHMT/G9a in fly and mouse [7,15,19,33]. The

generated H3K9me2 profiles also follow expected patterns in

euchromatin. H3K9me2 is known to dip immediately before the

transcriptional start site (tss) and near the polyadenylation site

Figure 5. EHMT affects non-associative learning and courtship memory. (a–c) Jump reflex habituation. (a–b) Habituation was measured in
(a) male flies of the genotypes EHMT+/Y (black diamonds), EHMTDD1/Y (red squares), and EHMTDD2/Y (orange triangles) and (b) female flies of the
genotypes EHMT+/EHMT+ (black diamonds) and EHMTDD1/EHMTDD2 (red circles). Jumping was induced by repeated light-off pulses for 100 trials. (c)
The mean number of trials to criterion was significantly higher for EHMT mutants (orange and red bars) than for EHMT+ flies (black bars) after training
with a 1 s inter-trial interval. (*) indicates a significant difference (p,0.001, one-way ANOVA and Bonferroni tests). (d–f) Learning and memory in the
courtship conditioning paradigm. (d) The Learning Index (LI) of EHMTDD1 males was normal at 0 min after training but was significantly reduced at
30 min after training (short term memory—STM) and 24 h after training (long term memory—LTM). (e) The LI of EHMTDD2 males was also affected in
short term memory and was rescued by expression of EHMT with the pan neuronal elav-Gal4 driver and the 7B-Gal4 driver, which is predominantly
expressed in the mushroom bodies in adult fly brains (orange bars). In the EHMT+ background, expression of EHMT with elav-Gal4 had no adverse
effect, while expression with 7B-Gal4 caused a significantly decreased LI (black bars). (f) Short term memory was rescued in the EHMTDD1 mutant
background by induced expression of EHMT during adulthood, using the hsGal4 driver. See Experimental Procedures for details on heat-shock
conditions and courtship training. Error bars represent standard error of the mean. (*) indicates a significant difference (Kruskall-Wallis and Mann-
Whitney tests).
doi:10.1371/journal.pbio.1000569.g005
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(polyA) of genes [30,34] either due to nucleosome depletion or

decreased H3K9me2 in these regions. We indeed observe a dip in

H3K9 dimethylation in these regions (Figure 6d and 6e, left

panels, black lines), thus demonstrating the accuracy and reliability

of our H3K9me2 profiles.

EHMT Affects H3K9me2 Levels in Discrete Regions of the
Euchromatic Genome

Since the global pattern of H3K9me2 appeared to be normal in

EHMT mutants, we reasoned that EHMT must affect discrete

regions within the genome. To identify these regions we divided

the euchromatic genome into 300 bp bins and compared the

number of sequenced tags per bin in wild-type versus mutant

samples. For each of the 384,944 bins in the euchromatic genome

we calculated a methylation ratio by dividing the number of tags in

wild-type by the number of tags in the mutant. Thus, a ratio

greater than 1 identifies regions where methylation is decreased in

EHMT mutant flies. We have plotted the log of these ratios

(log(2)wt/mt) in a histogram, in which Loss of Methylation Bins

(LOMBs) are found in the area of positive log values. The

histogram roughly follows a normal distribution but is asymmetric,

with 19,258 bins outside two-times the standard deviation of the

mean on the positive side, while only 50 bins outside two-times the

standard deviation on the negative side (Figure 6a). The 19,258

LOMBs constitute about 5% of the euchromatic genome and

provide an unbiased confirmation for the role of EHMT in H3K9

dimethylation. Loss of methylation (LOM) can also be visualized

in the USCS genome browser as areas where H3K9me2 levels are

depleted in the mutant but remain high in wild-type (two examples

given in Figure 6b). Interestingly, we find that LOMBs are not

randomly distributed in the genome but are enriched in the areas

1 kb upstream of the tss and 1 kb downstream of the polyA site by

1.6-fold and 3.3-fold, respectively (Figure 6c). As mentioned

above, we observe a local depletion of H3K9me2 in these regions

in wild-type animals (Figures 6d and 6e, left panel, black line). In

EHMT mutants, this local depletion is strongly augmented both

upstream of the tss and near the polyA site (Figures 6d and 6e, left

panel, orange line), providing further evidence that EHMT

deposits H3K9me2 marks in discrete euchromatic loci, with a

bias towards the 59 and 39 ends of genes.

Loss of H3K9me2 in EHMT Mutants Can Affect Gene
Transcription

H3K9me2 is a marker for condensed, transcriptionally

repressive chromatin [35], however the modification itself does

not strongly correlate with transcription levels on a genome wide

scale as is seen for some other histone modifications, like

H3K4me3 and H3K27me3 [30]. To determine whether

H3K9me2 can contribute to transcriptional repression in

Drosophila, we performed microarray expression analysis to

compare mRNA levels in EHMT wild-type and mutant larvae.

We then analyzed H3K9me2 levels upstream of the tss and

downstream of the polyA site for genes that were up- and

downregulated in EHMT mutants. Genes that are activated by

EHMT (i.e. greater that 2.5-fold downregulated in mutants, Table

S1) showed no difference in H3K9me2 profiles upstream of the tss

or downstream of the polyA site when comparing EHMT wild-

type and mutant strains (Figure 6d and 6e, middle panels). In

contrast, genes that are repressed by EHMT (i.e. greater that 2.5-

fold upregulated in mutants, Table S2) have a clearly augmented

dip in methylation both at the tss and polyA sites (Figure 6d and

6e, right panels) when compared to the wild-type profile and to the

average methylation profiles of all genes. These data indicate that

EHMT-mediated H3K9 dimethylation immediately up and

downstream of genes can affect transcriptional repression in

Drosophila.

EHMT Target Loci
Next, we investigated which genes were affected by loss of

methylation in EHMT mutants by associating each LOMB with

its closest gene. In total, LOMBs were found in or near 5,136

genes; 1,229 genes had LOMBs upstream of the tss (upstream

LOMB) and 1,712 genes had LOMBs downstream of the polyA

site (downstream LOMB) (Table S3). The two groups overlap by

255 genes (Figure 7a).

To assess the function of LOMB-associated genes, we analyzed

their gene ontology for enrichment of specific biological processes

using GOToolBox [36]. Genes associated with LOMBS are highly

enriched in terms related to the nervous system (Figure 7b, for lists

of genes associated with selected terms see Table S4). The broad

term nervous system development, associated to more than 350

LOMB genes, reaches the highly significant p value of 2.3610228

and is the most enriched tissue-specific term. Consequently, the

term is highly depleted from the pool of genes with unaltered

H3K9me2 in EHMT mutants; i.e. in genes that are not associated

with LOMBs (Figure 7b, no LOMBs). Strikingly, all GO terms

that describe EHMT mutant phenotypes (e.g. short- and long-term

memory, non-associative learning, dendrite morphogenesis, and

larval locomotory behavior) show significant enrichment when

considering all LOMB-associated genes and genes associated with

downstream LOMBs (Figure 7b, observed phenotypes). Other

neuronal terms that show high enrichment are also shown

(Figure 7b, neuronal terms). Signal transduction is also amongst

the most strongly enriched terms, with a p value of 6.2610248.

Many specific signaling pathway terms are highly overrepresented

amongst LOMB-associated genes, with G-protein coupled recep-

tor protein signaling pathway and small GTPase mediated signal

transduction being the top terms (Figure 7b, signaling pathways).

We also note significant enrichment of pathway terms that directly

relate to EHMT mutant phenotypes, such as cAMP signaling, a

major pathway involved in learning and memory.

Notably, there is a stark contrast in enriched terms when

comparing genes associated with either upstream or downstream

LOMBs (Figure 7b, Downstream LOMBs and Upstream

LOMBs). Downstream LOMBs are associated with genes that

are enriched for neuronal terms, signaling pathways, and terms

describing observed EHMT mutant phenotypes, while upstream

LOMBs are associated with genes involved in biological processes

requiring a high transcriptional plasticity, such as stress response

and actin cytoskeleton remodeling (Figure 7b, enriched in

upstream LOMBs). The contrast between these two groups in

their gene ontology illustrates the importance of H3K9me2

position at target gene loci and provides further support as to

the biological relevance of these data.

Finally, genes involved in regulatory processes such as

translation, chromatin assembly/disassembly, and chromosome

organization are highly depleted from LOMB-associated genes

(Figure 7b, depleted), which contrasts the striking enrichment of

nervous system and phenotype-relevant terms amongst LOMB-

associated genes.

Discussion

Here, we demonstrate that Drosophila EHMT, a histone

methyltransferase, regulates sensory dendrite development, larval

locomotory behavior, simple learning (habituation), and complex

memory (courtship conditioning). Notably, EHMT mutants are
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Figure 6. EHMT methylates discrete regions of the euchromatic genome. (a) Histogram showing the distribution of H3K9me2 methylation
ratios in logarithmic scale (log # of sequenced tags in wt/# of sequenced tags in mt) after binning of the euchromatic genome into 384,944 300-bp
segments. The mean (0.261) and 26the standard deviation is indicated. The region outside +26the standard deviation is comprised of 19,258 bins,
in which methylation is greater than 4.6-fold higher in EHMT+ than in EHMTDD1. These are referred to as loss of methylation bins (LOMBs). In contrast,
the region outside 226standard deviation contains only 50 bins. (b) Two examples of genomic loci with loss of methylation (LOM) in EHMT mutants.
The orb2 genes has a downstream LOM region (top panel) while the Sod gene has an upstream LOM region. Scale is indicated. (c) The positional
distribution of all bins in relation to genes is compared to the distribution of LOMBs. These distributions are significantly different (p,0.001; chi-
squared test). LOMBs are significantly enriched within 1 kb upstream of the transcriptional start site (tss) and 1 kb downstream of the
polyadenylation site (polyA), by 1.6- and 3.3-fold, respectively (p,0.001, hypergeometric test with Bonferroni correction). (d–e) Average number of
sequenced tags in EHMT+ (black) and EHMTDD1(orange) upstream of the tss (d) and near the polyA site (e) for all genes (left panels); for genes that are
.2.5-fold downregulated in EHMT mutants (middle panels); and for genes that are .2.5-fold upregulated in EHMT mutants (right panels).
doi:10.1371/journal.pbio.1000569.g006
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viable, appear healthy, and many other aspects of neuronal

development and function are normal, highlighting the selectivity

with which EHMT regulates specific aspects of neuronal

development and function. Genome-wide molecular analysis of

EHMT mutant flies supports this idea, revealing altered histone

methylation at target loci encompassing a selection of neuronal

genes that control learning, memory, and other phenotype-

relevant processes.

EHMT Affects H3K9me2 at Discrete Regions in the
Euchromatic Genome

The EHMTs are an evolutionarily conserved family of proteins

that regulate H3K9 methylation at euchromatic DNA [6,7,10,15].

Previous studies have shown that EHMTs affect transcription

through H3K9 dimethylation in the promoters of certain genes

[8,37–39]. Our study provides the first genome-wide overview of

EHMT function with respect to its role in post-translational

histone modifications. We provide evidence that Drosophila EHMT

induces H3K9 dimethylation at a proportion (about 5%) of the

euchromatic genome, with a preference for discrete regions at the

59 and 39 ends of genes (Figure 6). Genes with differential

H3K9me2 levels at the 59 end (within 1 kb upstream of the

transcriptional start site) are predominantly involved in biological

processes related to stress response (e.g. heat shock response and

actin cytoskeleton remodeling), which require rapid and frequent

changes in transcription. This observation is consistent with studies

in yeast and humans, which show that chromatin structure

immediately upstream of transcriptional start sites directly

correlates with transcriptional plasticity [40]. In contrast, genes

that are differentially methylated at the 39 end are highly enriched

in genes that control neuronal processes that are disrupted in

EHMT mutants (Figure 7). The general view is that gene

expression is regulated through interactions at the promoter, or

59 end. However, recent studies have revealed that 39 gene ends

also play an important and complex role in the regulation of

transcription by: (1) mediating gene looping [41–45], which is

necessary for transcriptional memory, i.e. the altered transcrip-

tional responsiveness of genes after a previous cycle of activation

and repression [43,46,47]; (2) serving as an initiation site for

antisense transcripts [41]; and (3) regulating transcript termina-

tion, a process that also affects transcript levels [48]. Currently

there is no evidence linking H3K9me2 to any of these processes,

however it is conceivable that differential histone methylation at

the 39 end of neuronal genes may act as a mechanism to control

their expression. In line with this idea a recent study has reported

that the DNA methyltransferase, Dnmt3a, also targets neuronal

genes in ‘‘non-promoter’’ regions, including 39 ends [49]. Thus, it

appears that epigenetic alterations to non-promoter regions is

emerging as a general theme for the regulation of neuronal gene

expression.

Regulation of Dendrite Development and Locomotory
Behavior by EHMT

EHMT mutants show a decrease in dendrite branching in

sensory neurons of the Drosophila peripheral nervous system

(Figure 3). Type 4 md neurons are known to provide the sensory

input that they receive via their dendrites as an essential functional

component to the neuronal circuitry governing larval movement

[23]. Our analysis of larval locomotion in EHMT mutants revealed

a behavioral phenotype characterized by an increased perfor-

mance of stops, retractions, and turns (Figure 4). It has been

reported that such a phenotype can directly arise from dysfunction

of type 4 md neurons [22,24], which raised the possibility that

decreased dendrite branching and altered locomotory behavior

are connected traits. Re-expression of EHMT in type-4 md

neurons did, however, not rescue larval locomotion defects,

suggesting that larval locomotion and type 4 md neuron

development are controlled independently by EHMT. Thus, this

lack of rescue may be due to requirements for EHMT in

additional peripheral or central neurons relevant to the crawling

pattern. We can also not exclude unspecific secondary effects or

that precise levels of re-expressed EHMT may be crucial for

turning behavior. Ultimately, the relevance of EHMT in both

dendrite development and crawling is illustrated by the observa-

tion that EHMT mutants show loss of H3K9me2 at 65 of 147

genes annotated to be involved in dendrite development and 15 of

16 genes involved in larval locomotory behavior (see Table S4 for

gene IDs).

Regulation of Learning and Memory by EHMT
We have shown that EHMT is required for light-off jump reflex

habituation (Figure 5a–5c), a simple form of non-associative

learning that is known to require classic learning and memory

genes such as rutabaga [27]. In this paradigm a sequence of leg

extension and flight initiation is induced by sudden darkness. This

behavioral response is mediated by the giant fiber interneurons,

which receive sensory input from the visual system in the brain

and relay this information through the thoracic ganglion where

efferent neurons descending from the giant fiber to thoracic

muscles are stimulated [50,51]. Only a few genes are known to

control jump reflex habituation and most of these are ion

channels, or are involved in cAMP and cGMP second messenger

signaling pathways [50]. EHMT is the first histone modifying

enzyme to be implicated in this simple form of learning. Jump-

reflex habituation is not an official gene ontology term, but

significantly, seven of the eight genes known to be involved in

jump-reflex habituation [50] show loss of H3K9 dimethylation in

EHMT mutants (Table S4).

We have also identified a role for EHMT in courtship memory

(Figure 5d–5f). This is a complex form of memory that allows male

flies to discriminate between receptive and non-receptive females,

presumably to optimize the energy that they spend on courtship.

We demonstrate that loss of EHMT leads to impaired short- and

long-term memory while the learning capacity of the EHMT

mutants was unaffected (Figure 5d). Moreover, we show that

normal courtship memory is restored upon re-expression of

EHMT in the whole nervous system and in a subset of neurons

labeled by 7B-Gal4, which is predominantly expressed in the

mushroom body neurons of the adult brain (Figure 5e). Although

further work is required to map the specific circuits required for

EHMT-dependent courtship memory, the mushroom body is

known to be crucial for courtship memory, but not learning [52],

pointing towards a deficit in this area of the brain. Significantly,

EHMT affects histone methylation in 22 of 36 genes that were

annotated at the time of our analysis to be involved in memory

(Table S4). Other relevant memory genes, such as Orb2 [53]

(Figure 6b), nemy [54], and ben [55], that were not yet included in

gene ontology databases are also affected by loss of EHMT.

Together, these data suggest that EHMT targets two-thirds of all

currently known memory genes.

Importantly, we were able to fully restore memory deficits by re-

expression of EHMT during adulthood (Figure 5f). Thus, although

EHMT can affect neuronal hardwiring (dendrite development in

the peripheral nervous system; Figure 3), it appears that adult

cognitive defects do not arise from neurodevelopmental defects

occurring prior to eclosion. This is consistent with a recently

reported impairment in fear conditioning that has been observed
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Figure 7. Bioinformatic analysis of EHMT target genes. (a) Venn diagram showing the overlap in genes associated with either Upstream
LOMBs or Downstream LOMBs. (b) Heat map showing the significance of enrichment or depletion for gene ontology terms describing biological
processes associated with: genes containing LOMBs (All LOMBs—5,136); genes containing LOMBs within 1 kb upstream of the transcriptional start
site (Upstream LOMBs—1,229); genes containing LOMBs within 1 kb downstream of the polyA site (Downstream LOMBs—1,712); and genes that do
not contain any LOMBs (No LOMBs—10,238). Complete lists of gene IDs for these groups are provided in Table S3. Color scale indicates the
significance of enrichment as determined using GOToolBox to perform (http://genome.crg.es/GOToolBox) a hypergeometric test with Benjamini &
Hochberg correction. Darkest colors indicate p values #1027. ns = non-significant (p.0.05).
doi:10.1371/journal.pbio.1000569.g007
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in mice with postnatal loss of Ehmt1 in the brain [15] and with our

observation that mushroom body morphology appears unaffected

in EHMT mutant flies. Thus, EHMT-mediated H3K9 dimethyla-

tion of specific loci is required in adult post-mitotic neurons to

consolidate or retrieve consolidated memories. Interestingly, other

epigenetic regulators, such as the DNA methyltransferases Dnmt1

and Dnmt3a, are also required in post-mitotic neurons for normal

memory [56]. These studies support the idea that the process of

learning induces reprogramming of the neuronal epigenome,

which crucially underlies memory [1–3]. Such ‘‘stable’’ chromatin

modifications, including DNA and histone methylation, appear to

be good candidates for ‘‘writing’’ long-term memory, however

these marks must also remain dynamic allowing for memories to

be modified. Our understanding of this stable versus dynamic state

of epigenetics in neurons and its consequences are highly limited.

It will thus be important to dissect the extent of epigenetic

plasticity during the different phases of learning, memory

consolidation, and memory retrieval, and to determine how these

alterations to the epigenetic landscape translate into transcription-

al changes required for information processing and storage.

A recent study of mRNA levels in mice with brain region-

specific loss of Ehmt1 has identified 56 genes that are consistently

misregulated in the mutant mouse brain [15]. Of these 56 genes,

18 are non-neuronal, which led to the interpretation that EHMT

proteins control cognition through repression of non-neuronal

genes in neuronal tissues. In contrast to this view, our data show

that Drosophila EHMT mediates H3K9 dimethylation at more than

350 neuronal gene loci with proven critical roles in nervous system

development and function. Does this apparent discrepancy reflect

evolutionary differences? Of the 56 differentially expressed genes

identified by Schaefer et al. [15], 30 are conserved in flies and 20

show loss of H3K9me2 in EHMT mutants (Table S4). This

correlation is very unlikely to occur by chance (p,2.961024;

hypergeometric test), suggesting that EHMT target genes are, at

least in part, evolutionarily conserved. The great number of highly

enriched neuronal genes amongst Drosophila EHMT targets, their

striking match with EHMT mutant phenotypes, and the

reversibility of cognitive defects argue that EHMT orchestrates

an epigenetic program that directly regulates a battery of neuronal

players underlying the molecular basis of cognition. It is also

noteworthy that EHMT targets include fly orthologs of NF1,

FMR1, FMR2, CNTNAP2, GDI, DLG3, and of many more genes

underlying syndromic and non-syndromic forms of intellectual

disability. Also, the major signaling pathways known to underlie

intellectual disability, Rho and Ras GTPase pathways [57,58], are

highly enriched in our ontology analysis (GO term: small GTPase

mediated signal transduction).

Our study complements a number of reports on post-embryonic

rescue of cognitive phenotypes in disease models of intensively

studied disorders such as Fragile X syndrome, Neurofibromatosis

I, Tuberous sclerosis, Rubinstein-Taybi, Angelman, and Rett

syndrome [59]. The growing number of such examples provides

an argument for reappraisal of the traditional view that genetic

forms of intellectual disability are largely due to irreversible

neurodevelopmental defects, findings which open prospects for

therapeutic intervention. Currently, clinical trials are underway to

treat Fragile X patients with compounds that have initially been

identified to rescue phenotypes in fly models of Fragile X

syndrome [60–63]. The EHMT mutant fly has provided novel

insights into the epigenetic regulation of cognition and will be a

valuable tool to work further towards such translational approach-

es. Furthermore, a better understanding of the epigenetic

mechanisms regulating cognitive processes is relevant to the wider

medical community, considering the increased awareness of the

epigenetic contributions to neurodevelopmental and psychiatric

disorders in general [4,5].

Materials and Methods

Fly Stocks and Maintenance
Flies were reared on standard medium (cornmeal/sugar/yeast)

at 25 degrees and 45%–60% humidity with a 12-h light/dark

cycle. All fly stocks were obtained from the Bloomington Drosophila

stock center (Indiana University) (see Text S1 for stock

descriptions) except for EHMT deletion strains and UAS-EHMT

strains, which were generated according to standard procedures

(see Text S1 and Figure 2).

Immunohistochemisty and Stainings
Tissues were dissected and fixed using standard methods.

Rabbit-anti-EHMT antibodies were a gift from Dr. A. Lambert-

son [10] and were used at a 1/100. Rat-anti-elav (1/500), mouse-

anti-repo (1/500), mouse-anti-DLG (1/100), and mouse anti-dac

(1/100) antibodies were obtained from the Developmental Studies

Hybridoma Bank (University of Iowa). Nuclei were visualized

using the fluorescent nuclear dye DAPI. For imaging of type IV

md neurons expressing a membrane targeted mCD8-GFP fusion

protein (memGFP) we used a rat-anti-mCD8 antibody (Invitrogen)

at 1/100. Secondary antibodies were conjugated to either alexa-

fluor-568 or alexa-fluor-488 (Invitrogen). Images were acquired

using either a Leica DM-IRE2 confocal microscope (Leica

Microsystems) or a Zeiss Axioimager Z1 fluorescent microscope

equipped with an ApoTome (Carl Zeiss B.V.). Where possible,

colocalization was shown in a color-blind-friendly manner using

photoshop to copy red or blue signals into both the red and blue

channel to produce magenta.

Western Blotting
Proteins were extracted from 0–3 h embryo collections as

previously described [64] and subjected to Western blot analysis

according to standard procedures using the Bio-Rad electropho-

resis system (Bio-Rad) (see Text S1 for details).

Analysis of md Neurons
We have analyzed the morphology of the solitary type 4 md

neuron in the ventral cluster called vdaB (ventral dendritic

arborization neuron B) [18]. For the visualization of dendritic

arbors we used the type 4 md neuron-specific driver 477-Gal4 [20]

to drive expression of memGFP. Details of crosses, confocal

microscopy, and quantification of dendrite ends are provided in

Text S1.

Analysis of Larval Locomotory Behavior
Larval crawling was assayed as described previously (refer to

Text S1 for details) [25]. Approximately 30 individuals per strain

were tested per day over a 5-d period, resulting in a total of

approximately 150 larvae per genotype and experiment. Exper-

iments were performed at least twice. Quantification of path

lengths was performed using Adobe Photoshop and Image J.

Light-Off Jump Reflex Habituation
Male flies of the genotypes EHMT+/Y, EHMTDD1/Y,

EHMTDD2/Y, and female flies of the genotypes EHMT+/EHMT+

and EHMTDD1/EHMTDD2 were tested for light-off jump reflex

habituation in a modified assay that was previously described by

Engel and Wu [27]. Details of this high throughput assay are

described Text S1.
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Courtship Conditioning
Flies were tested for learning and/or memory at 4 d of age using

the courtship conditioning assay as previously described [53]. For

induced EHMT expression via hs-Gal4, flies were incubated at 37

degrees for 45 min on days 1–3, with the final heat shock

treatment taking place 24 h before training and testing on day 4.

ChIP-seq
Chromatin immunoprecipitation was performed using standard

methods with anti-H3K9me2 antibodies (07-441, Upstate) and

Prot A/G beads (Santa Cruz) to capture antibody bound

chromatin (for details see Text S1). Massive-parallel sequencing

was performed using the Illumina Genome Analyzer IIx according

to standard protocols of the manufacturer (Illumina) (for details see

Text S1). All sequence analyses were conducted using the BDGP

Release 5 genome assembly (DM3) and the release 5.12

annotations provided by FlyBase. To compensate for differences

in sequencing depth and mapping efficiency among the two ChIP-

seq samples, the total number of unique tags of each sample was

uniformly equalized relative to the sample with the lowest number

of tags (7,043,913 tags), allowing for quantitative comparisons. For

association of individual bins with genes, we determined the

distances from the middle of the bin to the nearest tss or polyA site

using the Pinkthing tool (http://pinkthing.cmbi.ru.nl/cgi-bin/

index50.pl). The ChIP-Seq data from this study are available at

the NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.

gov/geo/) under series accession no. GSE22447.

Mircroarray Expression Analysis
Total RNA was isolated in triplicate from third instar larvae

using the RNeasy Lipid Tissue Midi kit (Qiagen). RNA quality was

evaluated using spectrophotometry and integrity was confirmed

using gel electrophoresis of glyoxal-denatured samples. Total RNA

samples were labeled using the ‘indirect’ method [65]. Superscript

II reverse transcriptase (Invitrogen) was used to produce cDNA

incorporated with aminoallyl-dUTP (Fermentas). Reactive fluo-

rescent dyes (Alexa647 or Alexa555; Invitrogen) were conjugated

to the individual samples. Two differently labeled samples, whole

larvae from EHMT mutant versus EMHT+ wild-type, were pooled

and co-hybridized to the 14K long oligo array from the Canadian

Drosophila Microarray Centre (www.flyarrays.com) according to

previously described methods [66]. Images of the hybridized

microarrays were obtained using a ScanArray 4000 scanner

(Perkin-Elmer) and were quantified using QuantArray 3.0 software

(Perkin-Elmer). Data were normalized using lowess sub-grid

normalization using Genetraffic Duo (Stratagene) analysis soft-

ware. Normalized data were exported and analyzed using the one-

class test available in the Statistical Analysis of Microarrays (SAM)

software package. The false discovery rate of the one-class test was

adjusted such that the expected number of false positive results was

less than one. Gene lists generated in SAM were filtered to include

only those genes that displayed at least a 2.5-fold increase or

decrease in abundance with respect to the wild-type sample and

whose coefficient of variance was less than 100%.

Statistical Analysis
For all data, normal versus non-normal distribution was assessed

using the Shapiro-Wilk test and by visual examination of

histograms. For comparison of more than two variants with a

normal distribution, one-way ANOVA analysis was used to

determine the probability that there were differences between

the variants. In the cases that ANOVA indicated that there was a

significant differences between variants (p,0.05) we performed

post hoc pair-wise comparisons using the Bonferroni correction,

which takes into account that multiple comparisons are being

made and therefore increases the stringency of the test. This

method was applied for normally distributed data in Figures 3c,

5c, S2e, S2f, S3, and S4b. For comparison of more than two

variants with a non-normal distribution, the Kruskal-Wallis test

was used to determine if there were significant differences between

any of the means. For data sets in which there was a significant

difference (p,0.05), we subsequently performed pair-wise com-

parisons using the Mann-Whitney test, a post hoc test that can be

used to compare two means with non-normal distributions. The

combination of Kruskal-Wallice and Mann-Whitney was used for

data sets which were not normally distributed (Figures 4b–4c and

5d–5f). All of the above tests were performed using SPSS software

(SPSS Inc.).

To test whether the number of LOMBs in a given genomic

position (e.g. gene body) was significantly enriched compared to

the distribution of all bins in the genome, we applied a

hypergeometric test using an online tool (http://stattrek.com/

Tables/Hypergeometric.aspx). This test was performed for all

genomic regions defined in Figure 6c—Upstream .1 kb,

Upstream ,1 kb, Gene Body, Downstream ,1 kb, Downstream

.1 kb, and Distant—to obtain individual p values. Since we

performed this test for six genomic regions, p values were corrected

using the Bonferroni method to account for multiple comparisons

using the same data set.

Enrichment of gene ontolology terms was analyzed using

GOToolBox [36] to perform a hypergeometric test with

Benjamini & Hochberg correction.

Supporting Information

Figure S1 Localization of EHMT in type 4 md neurons,
adult brains, and the larval body wall. (a) A type 4 multiple

dendrite neuron, vdaB, of the larval skin labeled with memGFP

(green) using the 477-Gal4 driver and stained with anti-EHMT

(red) and DAPI (blue). Shown here is a representative image from

EHMTDD1. (b) Confocal sections of adult brains stained with anti-

EHMT (green) and anti-dac (magenta). Dac is present in the

nuclei of the mushroom body Kenyon cells. EHMT labels dac

positive cells in wild-type (top) but is absent in EHMT mutants

(bottom). (c) Larval body wall stained with anti-EHMT (green) and

DAPI (magenta). The larval body wall primarily consists of muscle

and epidermal cells; some examples of these cell types are labeled

with arrows and arrow heads, respectively. EHMT appears to be

present in all nuclei in wild type but is absent in EHMTDD1.

Found at: doi:10.1371/journal.pbio.1000569.s001 (2.42 MB TIF)

Figure S2 mRNA levels of CG3038. Quantitative Real time

qPCR was used to measure the relative levels of CG3038 mRNA in

EHMTDD1 mutant larvae and EHMT+ larvae. Data shown are the

average relative expression obtained using three reference genes,

b’cop, eIF2b-c, and RpII140.

Found at: doi:10.1371/journal.pbio.1000569.s002 (0.14 MB TIF)

Figure S3 EHMT does not affect adult mushroom body
morphology, larval neuromuscular junction morpholo-
gy, or adult photoreceptor function. (a–b) Adult mushroom

bodies from (a) EHMT+ and (b) EHMTDD2 were visualized by

expression of UAS-memGFP with 7B-Gal4. (c–d) Larval muscle 4

neuromuscular junctions from (c) EHMT+ and (d) EHMTDD2 were

visualized by anti-DLG labeling. (e) Quantification of NMJ area

revealed no difference between EHMT+, EHMTDD1, and

EHMTDD2. (f) Quantification of bouton number revealed a slight

decrease of about 4 boutons in EHMTDD2, but no difference
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between EHMT+ and EHMTDD1. For quantification of NMJ area

and button number n = 52, 53, and 59 for EHMT+, EHMTDD1,

and EHMTDD2, respectively. (g) Electroretinograms from EHMT

mutant and wild type adults show that EHMT mutant flies have

normal photoreceptor function. Error bars represent standard

error of the mean.

Found at: doi:10.1371/journal.pbio.1000569.s003 (0.70 MB TIF)

Figure S4 Loss of EHMT does not affect phototaxis or
negative geotaxis. Mean (a) phototaxis index and (b) climbing

index in EHMT+, EHMTDD1, and EHMTDD2. No significant

differences were found between the three genotypes. Error bars

represent standard error of the mean.

Found at: doi:10.1371/journal.pbio.1000569.s004 (0.19 MB TIF)

Figure S5 Expression of 7B-Gal4 in the adult brain.
Confocal projections of the anterior (top) and posterior (bottom)

regions of the adult brain in UAS-GFP/+; 7B-Gal4/+ flies. GFP

expression is observed predominantly in the mushroom body (mb)

and mushroom body calyx (mbc). Lower levels of staining are seen

in the antennal lobe (AL), lobula (lo), and what appears to be the

suboesophogeal ganglion (sog).

Found at: doi:10.1371/journal.pbio.1000569.s005 (0.82 MB TIF)

Figure S6 EHMT protein levels in the mushroom body
upon expression with 7B-Gal4 and elav-Gal4. (A) Whole

mount adult brains were stained with anti-EHMT antibodies and

anti-dac antibodies, which label the nuclei of mushroom body cells

(Kenyon cells). Using 7B-Gal4 (left panels) EHMT protein is

observed at a high level in all dac positive cells. Absolute protein

levels are lower in the EHMTDD1 background, likely due to

absence of the endogenous protein. Using elav-Gal4, EHMT

expression also appears at a high level in Kenyon cells, however

only in a subset of these cells. (B) Image J was used to quantify

EHMT levels. We measured EHMT staining intensity in dac

positive regions of the brain. Overall fluorescence is highest in

EHMT+; 7BGal4/UAS-EHMT, correlating with the loss of learning

in this genetic condition. The other three genotypes show a

significantly lower overall staining level (p,0.01). Error bars

represent standard error of the mean.

Found at: doi:10.1371/journal.pbio.1000569.s006 (1.81 MB TIF)

Figure S7 Chromosome-wide H3K9 dimethylation in
EHMT wild-type and mutant strains. Sequenced tags,

isolated by ChIP with H3K9me2 antibodies, were mapped to

the Drosophila genome and visualized using the USCS genome

browser. All chromosomes show an increase in H3K9me2 at the

centromeric end of the chromosomes (labeled 2Lh, 2Rh, 3Lh, and

3Rh and marked with black bars). This is expected since these

regions are known to have heterochromatic properties and are

contiguous with centromeric heterochromatin. The increase is less

pronounced in Chromosome 3Rh, which is known to be more

similar to euchromatin than the other centromeric ends, 3Lh, 2Lh,

and 2Rh.

Found at: doi:10.1371/journal.pbio.1000569.s007 (0.44 MB TIF)

Table S1 Genes downregulated 2.5-fold or more in
EHMT mutant larvae as compared to EHMT+.

Found at: doi:10.1371/journal.pbio.1000569.s008 (0.04 MB

DOC)

Table S2 Genes upregulated 2.5-fold or more in EHMT
mutant larvae as compared to EHMT+.

Found at: doi:10.1371/journal.pbio.1000569.s009 (0.05 MB

DOC)

Table S3 LOMB-associated genes.

Found at: doi:10.1371/journal.pbio.1000569.s010 (1.11 MB XLS)

Table S4 Genes associated with official gene ontology
terms or otherwise annotated gene groups. aOfficial

ontology term according to www.geneontology.org. bFrom Engel

and Wu, 2009. cMammalian-to-fly orthology refers to one-to-one

or many-to-one orthology. dSchaefer et al., 2009 [15]. eFly genes

represented by more than one mouse counterpart in Schaefer

et al., 2009 [15].

Found at: doi:10.1371/journal.pbio.1000569.s011 (0.03 MB

DOC)

Text S1 Supplementary Materials, Methods, and
Results.

Found at: doi:10.1371/journal.pbio.1000569.s012 (0.09 MB

DOC)
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